<u>\$3.2</u> Multiple fivebranes and non-Abelian MTCs Consider now the (2,0) - theory of N M5 branes (N>1) on L(R,1), × M3 : 6d (2,0)-th on $L(k,1)_{L} \times M_{3}$ reduce along $L(R,I)_{L}$ M3 complex CS-th on Mr 3d N=2-th TN[M3] on L(k,l), The 3d-3d correspondence now reads $Z_{T_{N}[M_{3}]}[L(k,l)_{b}] = Z_{C_{5}}^{(k,\sigma)}[M_{3};GL(N,C)]$ In the following we want to focus on "Seifert manifolds" at mitting a fibration structure : $S' \longrightarrow M_3 \xrightarrow{\pi} \Sigma$ Riemany - surface

Basic example
$$M_3 = S' \times \Sigma_1$$
,
 \rightarrow geometry becomes
symmetries: $U(I)_N$ $SU(3)_R$
 Q Q
space-time : $L(R_1)_b \times T^*Z \times S' \times R^3$
N fivebranes: $L(R_1)_b \times \Sigma \times S'$
 \rightarrow do topological twist along Riemann
surface Σ
N M5's
 $\downarrow S'$
 $Sd \ W=J \ SYM$
 $\downarrow Z \subset T^*\Sigma$
 $3d \ W=4 \ sigma \ model$
with target $M_H(\Sigma i G)$ (Hitchin
 $moduli \ space)$
 $S= \int fhd^3x (\frac{1}{2}g_{13}(q) \Im q^i \Im^m q^j$
 $I \ \Sigma c T^* \overline{Z}$

where
$$\varphi': M \longrightarrow \mathcal{M}_{H}(\Sigma; G)$$
 are
bosonic fields and χ_{m}^{E} , $\gamma \overline{J}$ are
their fermionic superportners
 $\rightarrow R$ -symmetry group enhanced to
 $SU(2)_{R} \times SU(2)_{N}$
 $U(1)_{N} \subseteq T^{*} \mathbb{Z}$ (acts on
fibers)
We note that $\mathcal{M}_{H}(\Sigma; G_{\mathcal{C}})$ is the
moduli space of G-Higgs bundles
over Σ :
 $\mathcal{M}_{H}(\Sigma; G_{\mathcal{C}}) = \left\{ (A, \phi) \middle| \begin{array}{c} F_{A} - \phi_{A} \phi = 0 \\ d_{A} \phi = d_{A}^{T} \phi = 0 \end{array} \right\} / g$
where $\phi \in \Omega'(\Sigma, g)$ is adjoint-valued
one-form
 \rightarrow weakly gauging $U(1)_{S}$ generated
by $j_{N}^{3} - j_{R}^{3}$ leads to $3d N=d$
theory with R-symmetry $U(1)_{R^{1}}$
generated by $j_{N}^{3} + j_{R}^{3}$

→ 5d W= 2 SYM on
$$S^2 \times (Z \times S')$$

→ Lorentz and R-symmetry.
Is broken to:
 $SO(5)_L \times SO(5)_R \longrightarrow SO(2)_L \times SO(3)_L \times U(1)_N \times SU(2)_R$
 $S^2 \xrightarrow{Z \times S'}$
 $U(1)_L \subset SO(3)_L$
top. twist → identify new Lorentz
group $U(1)'$ with diagonal
subgroup $U(1)_L \times U(1)_N$
the spectrum of 5d SYM transforms
as follows:
 $Sd = SO(5)_L \times SO(5)_R$ field $SO(2)_L \times U(1)_L \times U(1)_N \times U(1)_R$
 $A^{5d} = (5,1)$
 $A^{5d} = (5,1)$
 $A^{5d} = (1,5)$
 $a = \frac{4}{2} \times \frac{$

u(1), acts as: $\Theta \in \mathcal{U}(\iota)_{\mathcal{S}} : \begin{pmatrix} \phi_{\iota} \\ \phi_{\lambda} \end{pmatrix} \longrightarrow \begin{pmatrix} \cos \Theta \phi_{\iota} - \sin \Theta \phi_{\lambda} \\ \sin \Theta \cdot \phi_{\lambda} + \cos \Theta \cdot \phi_{\lambda} \end{pmatrix}$ Alternatively, we can do a top. twist along L(k,1): N fivebranes: $L(k_1)_b \times \sum \times S'$ spacetime: $T^*L(k_1)_b \times T^*\Sigma \times S'$ symmetries: $SU(d)_R$ $U(1)_N$ Know S' degree K Know S' (k,1) - stake R²-s to be cotangent bundle of P'

Thus we arrive at the correspondence:

$$\dim_{\mathcal{B}} \mathcal{H}_{CS}(\Sigma; G_{c}) = Z_{CS}[\Sigma \times S; G_{c}, \beta]$$

 $= Z_{T}^{\text{twisted}} [\Sigma \times S']$

