§3.2 Multiple fivebranes and non-Abelian MICs

Consider now the $(2,0)$-theory of N M5 branes $(N>1)$ on $L\left(k_{1}\right)_{6} \times M_{3}$:

Gd $(2,0)$-th on $L(k, 1)_{6} \times M_{3}$

Bd $N=2-t h T_{N}\left[M_{3}\right]$
on $L\left(k_{1},\right)_{b}$
complex CS-th on M_{3}
The 3d-3d correspondence now reads

$$
Z_{T_{N}\left[M_{3}\right]}\left[L(k, 1)_{b}\right]=Z_{C s}^{(k, \sigma)}\left[M_{3} ; G L(N, C)\right]
$$

In the following we want to focus on "Seifert manifolds" atmitting a fibration structure :

$$
S^{\prime} \longleftrightarrow M_{3} \xrightarrow{\pi} \sum_{T}
$$

Riemann -surface

Basic example $M_{3}=S^{\prime} \times \Sigma$,
\rightarrow geometry becomes symmetries:
space-time: $L(k, 1)_{b} \times T^{*} \sum \times S^{\prime} \times \mathbb{R}^{3}$
N five branes: $L(k, 1)_{b} \times \sum \times S^{\prime}$
\rightarrow do topological twist along Riemann surface \sum
N $\mathrm{MF}^{\prime} \mathrm{s}$
$\downarrow S^{\prime}$
Sd $N=2$ SYM

$$
\downarrow \Sigma c T^{*} \Sigma
$$

Bd $W=4$ sigma model
with target $M_{H}\left(\Sigma_{i} G\right)$ (Hitchin moduli space)

$$
\begin{aligned}
& S=\int_{M} \sqrt{h} d^{3} \times\left(\frac{1}{2} g_{i j}(\varphi) \partial_{\mu} \varphi^{i} \partial^{\mu} \varphi^{j}\right. \\
&\left.+\varepsilon_{i j} x_{\mu}^{I} \nabla^{\mu} \eta^{j}+\frac{1}{2} \frac{1}{\sqrt{4}} \varepsilon^{\mu \mu} \Sigma_{I J} x_{\mu}^{F} \nabla_{\nu} x_{\rho}^{j}\right)
\end{aligned}
$$

where $\varphi^{i}: M \rightarrow \mu_{H}(\Sigma ; G)$ are bosonic fields and X_{m}^{I}, η^{J} are their fermionic superpartners
\rightarrow - symmetry group enhanced to

$$
\begin{aligned}
& \operatorname{su}(2)_{R} \times{\operatorname{su}(2)_{N}}_{U}^{U} . \\
& \\
& u(1)_{N} G T^{*} \sum\binom{\text { acts on }}{\text { fibers }}
\end{aligned}
$$

We note that $\mu_{H}\left(\Sigma_{i} G_{\mathbb{C}}\right)$ is the moduli space of G-Higgs bundles over Σ :

$$
\mu_{H}\left(\Sigma_{i} G_{\mathbb{C}}\right)=\left\{(A, \phi) \left\lvert\, \begin{array}{l}
F_{A}-\phi \wedge \phi=0 \\
d_{A} \phi=d_{A}^{+} \phi=0
\end{array}\right.\right\} / g
$$

where $\phi \in \Omega^{\prime}(\Sigma, g)$ is adjoint-valued one-form
\rightarrow weakly ganging $U(1)_{\beta}$ generated by $\dot{\partial}_{N}^{3}-\dot{\partial}_{R}^{3}$ leads to $3 d N=2$ theory with R-symmetry $U(1)_{R^{\prime}}$ generated by $\dot{\partial}_{N}{ }^{3}+\dot{j}^{3} R$
$U(1)_{\beta}$ acts on target $\mu_{H}\left(\Sigma_{i} G\right)$ as

$$
U(1)_{\beta}:(A, \phi) \longmapsto\left(A, e^{i \theta} \phi\right)
$$

where each point in $\mu_{H}\left(\Sigma_{i} G\right)$ is represented by (A, ϕ)
\rightarrow gang in $U(1)_{\beta}$ gives rise to Bd $w=2$ theory $T\left[\Sigma \times S_{i}^{\prime} ; \beta\right]$ (" β-deformation," discuss later)
Question: What does the β-deformation means for complex $C S$-th on M_{3} ?

For $M_{3}=\Sigma \times S^{\prime}$ and $\beta=1$, get:

$$
Z_{c s}\left[\Sigma \times s_{i}^{\prime} G_{\mathbb{C}}\right]=\operatorname{dim} \gamma t_{c S}\left(\Sigma ; G_{\mathbb{C}}\right)
$$

$\operatorname{Hcs}_{c s}\left(\Sigma_{i} G_{\mathbb{C}}\right)$ is infinite-dim.
$\rightarrow \beta$-def- regularizes it
To understand this, reduce $G d(2,0)-t h$ on S^{\prime}-fiber of $L(k, 1)$
$\rightarrow 5 d \quad W=2$ SYM on $S^{2} \times\left(\Sigma \times S^{\prime}\right)$
\rightarrow Lorentz and R-symmetry is broken to:

$$
\begin{aligned}
S O(5)_{L} \times S O(5)_{R} \rightarrow & S O(2)_{L} \times S O(3)_{L} \times U(1)_{N 1} \times S U(2)_{R} \\
& S^{2} \sum_{R} \times S^{1} \\
& U(1)_{L} \subset S U(3)_{L}
\end{aligned}
$$

top. twist \rightarrow identify new Lorentz group $U(1)^{\prime}$ with diagonal subgroup $U(1)_{L} \times U(1)_{N}$
the spectrum of $5 d$ SYM transforms as follows:

$S d$	$S O(5)_{L} \times S O(5)_{R}$	field	$S O(2)_{L} \times U(1)_{L} \times u(1)_{N} \times u(1)_{x}$			
$A^{5 d}$	$(5,1)$	A	0	± 2	0	0
		A_{0}	0	0	0	0
$\phi^{\text {Sd }}$	$(1,5)$	ϕ^{2}	± 2	0	0	0
		ϕ_{0}	0	0	± 2	0
		$(4,4)$	λ	0	0	0
		λ	± 1	± 1	± 1	± 1

top twist $\rightarrow \phi$ becomes one-form on \sum

$$
\rightarrow A=A+i \phi \text { and } A_{0}=A_{0}+i \phi_{0}
$$ become connection of complex CS-th along Σ and S^{\prime}

$u(1)_{\beta}$ acts as:

$$
\theta \in U(1)_{\beta}:\binom{\phi_{1}}{\phi_{2}} \mapsto\binom{\cos \theta \phi_{1}-\sin \theta \phi_{2}}{\sin \theta \cdot \phi_{1}+\cos \theta \cdot \phi_{2}}
$$

Alternatively, we can do a top. twist along $L(k, 1)$:
N fivebranes: $\quad L\left(k_{1} 1\right)_{b} \times \sum_{\cap} \times S^{\prime}$
spacetime: $\quad T^{*} L(k, 1)_{b} \times T^{*} \Sigma \times S^{\prime}$

$$
\circlearrowright \quad \circlearrowright
$$

symmetries: $\operatorname{su}(\gamma)_{R} \quad U(1)_{N}$
Know $S^{\prime} \xrightarrow[\mathbb{N}^{\prime}]{\substack{\text { degree } k}} \underset{\substack{k \\ l}}{ }$
\rightarrow take $\mathbb{R}_{-\beta}^{2}$ to be cotangent bundle of \mathbb{P}^{1}

Thus we arrive at the correspondence:

$$
\begin{aligned}
\operatorname{dim}_{\beta} H_{c s}\left(\sum_{i} G_{\mathbb{C}}\right) & =Z_{c s}\left[\sum \times s_{i}^{\prime} G_{\mathbb{C}}, \beta\right] \\
& =Z_{\left.T\left[L\left(k_{1}\right)\right)_{i} \beta\right]}^{\text {twist }}\left[\Sigma \times s^{\prime}\right]
\end{aligned}
$$

Lens space theory $T\left[L\left(k_{1}\right)\right]$ from brave constructions

Regard $L(k, 1)$ as T^{2} fibration over interval
We have $H_{1}\left(T^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$ generated by $[a]$ and [b]

\rightarrow make following choice of spacetime coordinates:

Use duality
M-th on $T^{2} \omega$ type IIB on S^{\prime}
\rightarrow Mס-branes wrapping torus in (k) give rise to $N D 3$-branes ending on a NS5-brane on one side of the interval and a $(1, k)$-bane on the other side:

